首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   6篇
  2022年   2篇
  2021年   13篇
  2020年   16篇
  2019年   11篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   9篇
  2014年   7篇
  2013年   8篇
  2012年   16篇
  2011年   13篇
  2010年   4篇
  2009年   7篇
  2008年   8篇
  2007年   13篇
  2006年   5篇
  2005年   13篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1991年   3篇
  1990年   1篇
  1974年   1篇
排序方式: 共有184条查询结果,搜索用时 203 毫秒
61.
A large number of treatment approaches have been used for spinal cord injury improvement, a medically incurable disorder, and subsequently stem cell transplantation appears to be a promising strategy. The main objective of this study is to ascertain whether combinational therapy of human neural stem cells (hNSCs) together with lithium chloride improves cell survival, proliferation, and differentiation in a rat spinal contusion model, or not. Contusive spinal cord injury was implemented on Wistar male rats. Experimental groups comprised of: control, hNSCs transplanted, lithium chloride (Li), and hNSCs and lithium chloride (hNSCs + Li). In every experimental group, locomotor activity score and motor evoked potential (MEP) were performed to evaluate motor recovery as well as histological assessments to determine mechanisms of improvement. In accordance with our results, the hNSCs + Li and the Li groups showed significant improvement in locomotor scores and MEP. Also, Histological assessments revealed that transplanted hNSCs are capable of differentiation and migration along the spinal cord. Although NESTIN-positive cells were proliferated significantly in the Lithium group in comparison with control and the hNSCs + Li groups, the quantity of ED1 cells in the hNSCs + Li was significantly larger than the other two groups. Our results demonstrate that combinational therapy of hNSCs with lithium chloride and lithium chloride individually are adequate for ameliorating more than partial functional recovery and endogenous repair in spinal cord-injured rats.  相似文献   
62.
63.
64.
Uremia Salt Lake, in North West Iran, has a hyper-saline water. A rare highly salinity-tolerant grass species, Aegilops cylindrica grows along its shores. Salinity tolerance of 44 genotypes of Ae. cylindrica, mainly collected from the Lake, was evaluated under control and 400 mM NaCl conditions using the physiological traits of plant height, dry weight, proline content, Na+ and K+ concentrations as well as K+/Na+ ratio. To evaluate the association between microsatellite (EST-SSR and SSR) markers and salinity tolerance, 35 primer pairs were used. Results showed a significant variation in the 44 genotypes studied in terms of their traits except for proline content. Ten most salinity-tolerant genotypes were identified based on their ability to survive, to produce the highest dry weight, and to sustain the least leaf Na+ concentration under salinity stress. The very high negative correlation found between Na+ concentration and salinity tolerance revealed the importance of individual or a combination of Na+ exclusion and excretion mechanisms contributing to the hyper-salinity tolerance of these genotypes. Clustering analysis based on marker data divided the 44 studied genotypes into two groups that were consistent with their saline and non-saline geographical areas. Results of molecular markers showed that four microsatellite markers (Xgwm312, Xwmc170, Xgwm291 and Xgwm410) generated a distinguished banding pattern in ten most salinity-tolerant genotypes. These results supported previous reports on their linkage with Na+ exclusion genes (HKT1;5 and HKT1;4) in wheat, which provided further evidence of usefulness of both genes and the linked markers to the salinity tolerance of the halophytic grass family species.  相似文献   
65.
Iron toxicity reduces growth of rice plants in acidic lowlands. Silicon nutrition may alleviate many stresses including heavy metal toxicity in plants. In the present study, the ameliorating effects of silicon nutrition on rice (Oryza sativa L.) plants under toxic Fe levels were investigated. Plants were cultivated in greenhouse in hydroponics under different Fe treatments including 10, 50, 100, and 250 mg L?1 as Fe-EDTA and silicon nutrition including 0 and 1.5 mM sodium silicate. Iron toxicity imposed significant reduction in plant fresh weight, tiller, and leaf number. The activity of catalase, cell wall, and soluble peroxidases, and polyphenol oxidase in shoots decreased due to moderate Fe toxicity (50 and 100 mg L?1), but increased at greater Fe concentration. Ascorbate peroxidase activity increased in both roots and shoots of Fe-stressed plants. Iron toxicity led to increased tissue hydrogen peroxide and lipid peroxidation. Silicon nutrition improved plant growth under all Fe treatments and alleviated Fe toxicity symptoms, probably due to lower Fe concentration of Si-treated plants. Silicon application could improve the activity of antioxidant enzymes such as catalase, ascorbate peroxidase, and soluble peroxidase under moderate Fe toxicity, which resulted in greater hydrogen peroxide detoxification and declined lipid peroxidation. Thus, silicon nutrition could ameliorate harmful effects of Fe toxicity possibly through reduction of plant Fe concentration and improvement of antioxidant enzyme activity.  相似文献   
66.
Growth is a complex trait that adapts to the prevailing conditions by integrating many internal and external signals. Understanding the molecular origin of this variation remains a challenging issue. In this study, natural variation of shoot growth under mannitol‐induced stress was analyzed by standard quantitative trait locus mapping methods in a recombinant inbred line population derived from a cross between the Col‐0 and Cvi‐0 Arabidopsis thaliana accessions. Cloning of a major QTL specific to mannitol‐induced stress condition led to identification of EGM1 and EGM2, a pair of tandem‐duplicated genes encoding receptor‐like kinases that are potentially involved in signaling of mannitol‐associated stress responses. Using various genetic approaches, we identified two non‐synonymous mutations in the EGM2[Cvi] allele that are shared by at least ten accessions from various origins and are probably responsible for a specific tolerance to mannitol. We have shown that the enhanced shoot growth phenotype contributed by the Cvi allele is not linked to generic osmotic properties but instead to a specific chemical property of mannitol itself. This result raises the question of the function of such a gene in A. thaliana, a species that does not synthesize mannitol. Our findings suggest that the receptor‐like kinases encoded by EGM genes may be activated by mannitol produced by pathogens such as fungi, and may contribute to plant defense responses whenever mannitol is present.  相似文献   
67.
68.
A new genus of cynipid oak gallwasp, Zapatella Pujade-Villar & Melika, gen. n. (Hymenoptera: Cynipidae: Cynipini), with two new species, Zapatella grahami Pujade-Villar & Melika, sp. n. and Zapatella nievesaldreyi Melika & Pujade-Villar, sp. n., is described from the Neotropics. Zapatella grahami,known only from the sexual generation,induces galls in acorns of Quercus costaricensis and is currently known only from Costa Rica. Zapatella nievesaldreyi, known only from the asexual generation, induces inconspicuous galls in twigs of Quercus humboldtii, and is known only from Colombia. Diagnostic characters for both new species are given in detail. Five Nearctic species are transferred from Callirhytis to Zapatella: Zapatella cryptica (Weld), comb. n., Zapatella herberti (Weld), comb. n., Zapatella oblata (Weld), comb. n., Zapatella quercusmedullae (Ashmead), comb. n.,Zapatella quercusphellos (Osten Sacken), comb. n. (= Zapatella quercussimilis (Bassett), syn. n.). A key based on adults for the species belonging to Zapatella is also given. Generic limits and morphological characteristics of Zapatella and closely related genera are discussed.  相似文献   
69.
70.
The long-term effect of early life undernutrition on late gestation energy expenditure (EEgest) was investigated in sheep. Ewes were fed either adequate (100%) or restricted (60%) energy and protein during late foetal life as well as during last trimester of gestation later in life, resulting in three groups: Adequate-Adequate (AA, n = 5), Adequate-Restricted (AR, n = 5) and Restricted-Restricted (RR, n = 5). At two weeks pre-partum, EEgest were calculated from respiratory gaseous exchange and nitrogen excreted in urine and further it was partitioned to energy expenditure for conceptus development (EEconceptus) and homeorhetic adaptations in maternal metabolism (EEhomeorhetic). Late gestational energy and protein restriction reduced the EEgest in the AR ewes (4.1 MJ x d(-1)) but not in the RR ewes (5.2 MJ x d(-1)) compared with the AA ewes (6.8 MJ x d(-1)). Based on conceptus-weight, no significant difference was found in EEhomeorhetic among the groups; 172, 175 and 169 kJ/kg x d(-1) in AA, AR and RR ewes, respectively. However, EEconceptus was significantly lower in AR (135 kJ/kg x d(-1)) in comparison with AA (298 kJ/kg x d(-1)) and RR (252 kJ/kg x d(-1)) ewes. In conclusion, exposure nutrient restriction in early life impairs the ability of ewes to respond to nutritional restriction in terms of energy expenditure of gestation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号